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1. INTRODUCTION

Almost all flows of interest to ballisticians involve the presence of a second phase and

turbulence. In the absence of theoretical or experimental insight into their dynamics, the

adopted approach has been either to ignore the turbulence or use ad-hoc single-phase

descriptions with a number of "adjustable" parameters. Many of these do not have a sound

theoretical underpinning or involve extrapolations and are more in the nature of post-facto

instead of predictive.

To establish better modeling and computational capability in this field, a research effort

was undertaken to shed light on the interaction of pat'",ulate presence on turbulence and vice

versa. The statistical theory of turbulence gives a reasonably accurate descriptior, of the

measured average flows and correlation functions and can be extended to nonreactive two-

phase flows. However, if the two phases ,onsist of a gas and of a dispersed solid phase, the

extension is not a straightforward one. In fact, it requires a certain amount of "coarse-

graining," (i.e., spatial averaging); this question was discussed rather carefully by Besnard and

Harlow (1988). Alternatively, one can describe the dispersed particulate phase by means of a

Boltzmann equation (Domokos, Kovesi-Domokos, and Zoltani 1988a, 1988b). This has the

advantage that, in terms of a Chapman-Enskog expansion, one can generate not only the

Eulerian equations, (the result of coarse-graining) but, in principle, corrections of arbitrary

order to it. The difficulty is that very soon one runs into substantial computational difficulties.

Even with the help of modem computers, a straightforward approach to solving the resulting

coupled set of equations can be very time consuming.

In a previous work (Domokos, Kovesi-Domokos, and Zoltani 1991) we proposed a series

of variational principles in the framework of the statistical theory of single-phase turbulent

flows, based upon the work of Martin, Siggia, and Rose (1973) and De Dominicis and Peliti

(1978) (see also Domokos, Kovesi-Domokos, and Zoltani 1988a, 1988b). A variational

principle has the advantage that there exist methods to extremize the functional in question

which are very economical from the calculational point of view-the Rayleigh-Ritz method

being the most notable one. (The disadvantage is, of course, that some insight is necessary

in order to guess good trial functions; most of the time one proceeds by trial and error in

several steps.) In Domokos, Kovesi-Domokos, and Zoltani (1991) we performed a sample



alculation in order to describe a single-phase, cylindrically symmetric jet. Despite the

implicity of the trial functions and the small number of parameters, quite a reasonable

igreement with the data was achieved.

The purpose of the present work is to extend the calculation to nonreactive, two-phase

lows. The plan of this report is the following: In the next section we briefly review the

ormalism described in Domokos, Kovesi-Domokos, and Zoltani (1988a, 1988b, 1991). For

he sake of brevity, we use a somewhat abstract notation-this makes the concepts and the

;tructure of the formalism more transparent. In Section 3 we state the framework for the

,omputation of two-phase flows. Section 4 contains a sample of calculations of some of the

)roperties of a cylindrically symmetric two-phase jet and a comparison of the results with

)xperimental data. Findlly, Section 5 contains the conclusions.

2. THE FORMALISM

We consider a vector space of dynamical variables; X denotes a generic element of the

vector space. In general, X is a function of space and time. For instance, X may stand for

the six components of the velocity field of a two-phase flow at a given space-time point (i.e.,

three components of the velocity of the carrier fluid and three components of the velocity of

the particulate component). We assume that X obeys an autonomous equation of motion of

the form

aX + F[ X] = f, (1)

Nhere the functional F[XJ may contain spatial derivatives, integrals over spatial coordinates,

etc., but no integral over time and no time dependence either. Further, f is a Gaussian

random force, with correlation operator K

The generating functional of the correlation functions is given in terms of an arbitrary

source, j:

Zj , fDXexp[-<aX- FIK(3X- F)> + <jIX>]. (2)

2



Here < I.> stands for a suitable scalar product over the vector space, Including integration

over space-time variables and summation over discrete components. The functional measure,

JDX, contains an infinite determinant, viz. det (at - 8F6X), as explained in Domokos, Kovesi-

Domokos, and Zoltani (1988a). The cumulants are generated by W = -In Z.

The various averages are obtained by taking functional derivatives of W with respect to .

We use the notation

G(1) <X(Xl)>_ 8W (3)

G(1,2) = <X(x,)X(x2)> = (4)
8j(x, )6j( x2 )

and so on. Here x, stands for a space-time point.

In order to get a suitable variational principle, we also add a bilinear source in the

exponential of Equation 2, of the form, < ,n (1,2) I G(2, 1) > (Domokos, Kovesi-Domokos, and

Zoltani 1991). Next, we perform a double Legendre transformation in the variables j and TI, so

that the resulting functional has G(1) and G(2) as its functional arguments. We denote this

functional by S.

One has the relations

6S) 6( - TI(1,2). (5)SG(1 ) G(1,2)

The functional given by Equation 5 is stationary if the arbitrary sources are put equal to zero.

The reader will readily recognize that functionals of the type in Equation 5 play a role

analogous to the entropy in statistical mechanics. For this reason, relations of the type 5 with

vanishing external sources were called the principle of stationary entropy in an analogous

context by De Dominicis and Martin (1964).

3



3. EQUATIONS FOR A TWO-PHASE TURBULENT FLOW

In what follows, variables characterizing the carrier fluid will be given a subscript f, those

characterizing the dispersed particulate phase a subscript p. We work in terms of

dimensionless variables by dividing velocities with some characteristic speed, coordinates by a

characteristic size of the system under consideration, etc. In this report we write down the

equations of motion In the leading approximation of the Chapman-Enskog expansion

(Domokos, Kovesi-Domokos, and Zoltani 1988a) so that both phases obey the equations of

hydrodynamics. The volume fractions of the fluid and particulate phase are denoted by P- and

ep, respectively. Of course,

Ef + p= . (6)

We now have the equations of continuity,

a r + a (eu) =0 , (7)

+a ( e,up) = 0 (8)

The equations of motion read

,+ (euu) + P eC(u'- u;) + ft,' (9)

,(u')+ -.(e uu,) + - L e,e£(u,' - up) + fp. (10)
a7 X P  '1 p ax, p

Here f& and f. stand for the perturbing Gaussian random forces acting on the fluid and

particulate phases, respectively. In Equations 9 and 10, p stands for the external pressure.

The quantity C, In general, is a function of I u, - up I. However, with the exception of some

4



unusual cases such as highly viscous carers, very heavy loading, etc., the velocity difference

between both phases is not too big. In that case, C can be, to a good approximation,

replaced by its value given by Stokes' law. This results in a considerable simplification of the

computations.

The reader will notice that a viscous term has been omitted from Equation 9. Despite the

fact C is proportional to the viscosity of the carrier fluid, the approximation is a permissible

one unless one is interested in very small scales (large wave numbers). The coupling term is

proportional to a velocity difference (in the Stokesian approximation), whereas the viscous

term is proportional to the scalar curvature of a velocity field (on large and moderate length

scales, the latter is less important than the former).

Let us now take a look at Equations 6, 7, and 8. One immediately realizes that if the flow

of one of the phases is approximated by an incompressible one, the flow of the other phase

becomes incompressible too. In a large number of practically important situations, the

approximation of an incompressible flow is a rather good one. In what follows, we are going

to make the approximation. Approximating a flow by an incompressible one has two

immediate consequences. First, the pressure is no longer an independent dynamical variable;

it can be integrated out explicitly from the generating functional of the correlation functions.*

Second, the equations of continuity now tell us Viuf = V.Up = 0; hence, the velocity fields can

be obtained as curls of vector potentials with an ensuing gauge of freedom (Domokos, Kovesi-

Domokos, and Zoltani 1991).

Finally, the expression of the stirring force (or, more precisely, its correlation operator) has

to be discussed. In Section 4, and in many other practically important cases, we are

concerned with problems where the mean flow is cylindrically symmetrical, with the mean

velocity having a large component along the axis of symmetry and a rather small radial

component. In such cases one gets satisfactory results by taking a stirring force of the same

symmetry and, in fact, neglecting the radial component of the stirring force altogether. We

take for both phases an Identical form of the matrix elements of the correlation operator, viz.,

* Traditionally, this is formulated as using the equations of motion to eliminate the pressure; however, within
the present context, performing a Gaussian functional integral over the pressure leads to the desired result in a
more transparent manner (Domokos, Kovesi-Domokos, and Zoltani 1991).

5



K,.,(x,x')cexp(-aoIx'- x'I)8(xT- X1)8(t - t')8,. 8,, ,  (11)

where the axis of symmetry has been chosen as the 3 d axis and X T denotes a vector lying in a

plane perpendicular to it. The stream-wise correlation of the stirring force is governed by the

parameter a. As it turns out, its magnitude is not a critical one (Burgett 1989), but it seems

that letting a -+ 0 Is not a very good approximation.

Now we have assembled the elements of computing the generalized entropy, Equation 5.

We have done it to two-loop accuracy (Domokos, Kovesi-Domokos, and Zoltani 1991) (i.e., by

computing the first approximation to the solution of the Cornwall-Jackiw-Tomboulis functional

differential equation).

Unfortunately, the result of the calculation is neither transparent nor revealing. (In fact,

most of the calculation has to be performed by means of symbolic manipulation programs.)

The reader will be spared the sight of the result. Instead, in the next section, we present the

results of a calculation of the correlation functions of a steady two-phase jet sufficiently far

from the plane of injection. (In this way, one can assume that the turbulence is fully

developed: transients died away and the correlation functions are stationary.)

4. CORRELATION FUNCTIONS OF A CYLINDRICALLY SYMMETRIC TWO-PHASE JET

The calculation of a cylindrically symmetric jet is of considerable practical importance-

many jets possess, to a very good approximation, axial symmetry. In addition, it is a relatively

simple configuration; it is eminently suitable for testing a method of calculation. We

proceeded in a way which proved to be successful in our previous work. The procedure

follows:

o The velocity fields are obtained as the cud of vector potentials: u,,p = V x Ap.1

We work In an axial gauge: the component of the vector potential along the axis of
symmetry (chosen to be the 3d axis) vanishes.

o A Reynolds decomposition is used for the vector potentials: A = (A) + A'
correspondingly, the velocity fields are decomposed as u = U+u'. (For the sake of
simplicity, we omitted the indices f,p the decomposition is used for both phases.)

6



" We determine the form of the correction functions of the vector potentials:

Z.,= 8U.0Z114 + a. AZ" . (12)

In this equation, 8 and e stand for the Kronecker and Levi-Civita tensors,
respectively. Lower case Greek indices refer to vector components in the plane
transverse to the symmetry axis, the superscripts i, j assume the values f and p.

" One assumes a trial form of the vector potentials and of the functions ZJ1,2
containing a few unknown parameters.

" These expressions are substituted into the expression of the effective Equation 5.

* The entropy is then extremized with respect to the parameters. This determines
their optimal values given the functional form of the vector potentials and correlation
functions.

" Finally, the mean velocities and correlation functions are computed by taking the
appropriate curls.

(Extremizing the entropy with respect to parameters in a given functional form is the Rayleigh-

Ritz method of solving a variational problem.)

All velocities are measured in units of the fluid velocity, Uo, on the axis at the plane of

injection. The unit of length is the diameter of the injection pipe. All vector potentials and

correlation functions are assumed to be time independent. We chose essentially the same

trial functions for both phases as in the case of a single-phase flow. (Of course, the optimal

values of the parameters are different.) We used the 3d component of the mean velocity on

the axis as an input. The data were taken from Zoltani and Bicen (1990). The following forms

give a good fit to the data,

Ut(z,r =0) = 1.35 - 0.35exp(-0.1z 2 ) , (13)
1 + 0.035 z 312

U,(z,r, 0) 0.78( .113 Z 32 - 0.13exp(-0.03z2)J" (14)

7



The functional form of the average of the vector potential was assumed to have a Gaussian

radial dependence for both phases. In cylindrical coordinates we have

A* 1 (Z)exp _ (15)

with R(z) - a + bz. The optimized values of the parameters a and b are

a, = 0.25, b, = 0.076 ;a, = 1.38, b, = 0.013.

Likewise, we used the same functional form for the quantity Z, as in Domokos, Kovesi-

Domokos, and Zoltani (1991) for both phases

Z, = Aexp[-f(z1 - z 2 )2 - g(xr.1 - XT,2 )2]

exp(-8M)(1 + BM)[ U3(z ,0) U3 (z210 ) ]12 . (16)

Here,

1[ R(z )2  R(z 2 )2 J

(Just as in Domokos, Kovesi-Domokos, and Zoltani [1991], we set Z2 = 0.) The optimal

values of the parameters are

A - 0.0019,A PP - 0.0013,B" = 2BPP = 3.5,8"' = 1.79,8P-P = 2.63.

The values of the parameters f, g are practically identical in both phases, P'P = f " = 5.6 and

g P, - g " - 3.7. These values have been computed for the particle loading extracted from

Zoltani and Bicen (1990). The cross correlation functions, ZP"t , have basically the same

shape (the parameters B,8,fg are practically identical). However, the overall scale is much

8



smaller (AP-' A'). This Is Intuitively obvious-with the loading fraction used In Zoltani and

Bicen (1990), the coupling between both phases is a rather weak one. As a consequence, it

is rather hard to obtain a reliable estimate of AP' . Several iterations fluctuate around a value

of the cross correlation scale at least an order of magnitude smaller than (the comparable)

fluid and particle correlation scales; however, a stable maximum of the generalized entropy,

Equation 5 Is hard to achieve.

Once we have these parameters values, one can take the curl of the mean vector

potential and the double curl (with respect to both arguments) of Z,,, in order to obtain the

mean velocity and the correlation functions of the fluctuations, respectively. Experimental data

on the fluctuation correlation are often taken at coincident arguments; this was the case in

Zoltani and Bicen (1990) too. We display the results for those correlation functions where

data were available in those articles. The other correlation functions can be easily reproduced

from the preceding formulae.

In the figures, we return to a conventional notation which is acceptable for coincident

arguments. The correspondence between the present notation (more suitable for theoretical

calculations) and the conventional one is the following. Define

Ga.b = ["x Zx V1.b, (17)

(i.e., the double curl of the fluctuation correlation function of the vector potential with respect

to both arguments). (In the case of coincident arguments, the curls are taken before the

arguments are let to coincide.) Note that Gab defined by Equation 17 is just the correlation

function of velocity fluctuations. For the sake of simplicity, we omitted the indices refer to the

phase (fp) in question.

We now have the correspondence between the conventional notation and the one used

here in Domokos, Kovesi-Domokos, and Zoltani (1991)

9



((u)f) G ' (18)
u2 3.3

U0

and a similar relation for the particle-particle correlation function. In an arbitrary Cartesian

coordinate system (the 3 axis coinciding with the axis of symmetry and the orientation of the
1st and 2 nd axes being determined by the measuring apparatus) the components in the plane

perpendicular to the axis of symmetry are denoted by v and w, respectively. There is a

relation between (v, (w , etc., and our notation similar to the one exhibited in Equation 18.

It is an obvious one and we do not exhibit it here. Note that cylindrical symmetry entails

1
1 =, G '2 =0 , (19)

for any combination of the phases p,f. (There is no good notation available in the

conventional system of notations for correlation functions such as Gab . However, among the

figures presented in the present work, no such correlation function has been plotted.)

5. CONCLUSIONS

The extension of the calculations described in Domokos, Kovesi-Domokos, and Zoltani

(1991) to a two-phase flow have basically the same merits as in the case of a single-phase

flow. One notes again that the variational method is a very economical one from the

computational point of view. With rather simple functional forms of the trial functions and in

terms of a few parameters, a reasonable agreement with the experimental data can be

obtained at the cost of a relatively small computational effort.

One can conceive a number of ways In which the agreement with the experimental data

could be improved.

* One can contemplate calculating higher order approximations to the generalized
entropy (De Dominicis and Peliti 1978).

" One can invent (with some physical insight) more sophisticated trial functions for the
description of the mean flows and the fluctuation correlation functions.

10



* Clearly, more experimental data are necessary In order to determine the
dependence of the various correlation functions on such physical quantities as the
loading fraction, the viscosity of the carrier fluid, etc. In turn, this will enhance one's
physical insight in "guessing" more sophisticated trial functions in the Rayleigh-Ritz
method.

At this point it is hard to determine the increase in computational cost once one decides to go

beyond the present, simplest approach. Nevertheless, experience with variational methods in
various branches of physics suggests that many methods are likely to be rather economical in

the statistical theory of turbulence too.

11
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